

Corporate Overview 2013

TissUse: Emulating Human Biology

Company:

- Berlin-based "human on a chip" company founded in 2010
- Dr. Uwe Marx, renowned bioreactor expert and serial biotech entrepreneur (VITA 34, ProBioGen)
- The four founders each have a 15- to 20-year track record in tissue engineering and organogenesis
- Engineering experience include human skin, lymph node, bonemarrow, liver, intestine, trachea, hair follicle, and microcapillaries
- Human-like safety and diseases models for compound testing
- Tissue regeneration technology for therapeutic application

Social and commercial value

Problem: Drugs pass preclinical, but fail in clinical development

Innovation Need:

Of 100 New Chemical Entities (*NCEs*) progressed form preclinical to clinical development :

- 46 fail due to toxicity
- 35 fail due to lack of efficacy

Current Market:

- USD 612 million estimated annual spending on preclinical efficacy testing in disease models
- USD 260 million estimated annual spending on preclinical ADME-Tox testing

Cost-Savings of Eliminating Failed NCEs

By eliminating NCEs in pre-clinic, large cost savings can be attained:

- Phase I: USD 15 million
- Phase II: USD 55 million
- Phase III: USD 205 million

S. M. Paul et Al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. *Nature Reviews Drug Discovery.* 2010. (9), 205-214. – confidential –

The Substance Testing Dilemma

"human on a chip"

static 2D & 3D human cell culture human but NOT systemic

animal models systemic but NOT human

- confidential -

Mission

• Establish miniaturized equivalents to human organs, physiologically combined into multi-organ arrangements to truly emulate human organismal long-term homeostasis

• Develop qualified on-chip assays for safety and efficacy evaluation of substances in a human organismal setting

Provide automation tools for high content analysis

The Multi-Organ Chip (MOC) Technology

Features:

- Chip format of a standard microscopic slide
- On-chip micro-pump and natural tissue to fluid ratio
- Variable physiological shear stresses applicable
- Tissue cultures 100,000-fold smaller than original organs
- Compatible with life tissue imaging
- Rapid prototyping of any relevant chip design - confidential -

Laboratory bioreactor

- Controlling 12 pneumatic actors
- Two chips per system
- Adjustable temperature and fluid flow
- Software control (e.g. WINDOWS, LINUX, MAC)
- Telemonitoring

Robust manufacturing background

single "organ" perfusion chip

single "organ" circulation chip

Sensors / In-process-controls

parameter approach	flow velocity	organ viability	organ functionality	$pH \& pO_2$	ť°
principle	particle imaging velocimetry	fluorescence spectroscopy	surface plasmon resonance for secreted proteins	fluorescence lifetime	PT1000 temperature detector
features	non invasive different spots biological particles	cell tracker live imaging double staining possible	multiple proteins (46 per micro sensor 10 mm x 0.8 mm)	fibre coupled external calibration	long-term robustness

Frank Sonntag

A Pipeline of Customizable Disease Models

Example: Organoid Disease Modeling - Melanoma

Goal: Candidate evaluation – generate human-like data in preclinical

More to come: liver disease, infectious disease, cancer, auto-immune

- confidential -

The human liver + "one" chip

Duration +"organ"	Short-term (<48h)	Long-term (<28d)	Homeostasis (90d, 1y)
skin			in progress
vasculature			in progress
intestine	V	in progress	in progress
lymph node	in progress	in progress	-

Emulating Human Biology

Contact

TissUse GmbH Markgrafenstrasse 18 15528 Spreenhagen bei Berlin Germany Tel. +49(0)30-314-27913 Email <u>reyk.horland@tu-berlin.de</u> Web <u>www.tissuse.com</u>

- confidential -